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Abstract 

The conventional theoretical models describing the damage accumulation, particularly void swelling, under cascade 
damage conditions do not include treatments of important features such as intracascade clustering of self-interstitial atoms 
(SIAs) and one-dimensional glide of SIA clusters produced in the cascades. Recently, it has been suggested that the problem 
can be treated in terms of ‘production bias’ and one-dimensional glide of small SIA clusters. In the earlier treatments a 
‘mean size approximation’ was used for the defect clusters and cavities evolving during irradiation. In the present work, we 
use the ‘size distribution function’ to determine the dose dependence of sink strengths, vacancy supersaturation and void 
swelling as a function of dislocation density and grain size within the framework of production bias model and glide of small 
SIA clusters. In this work, the role of the sessile-glissile loop transformation (due to vacancy supersaturation) on the 
damage accumulation behaviour is included. The calculated results on void swelling are compared with the experimental 
results as well as the results of the earlier calculations using the ‘mean size approximation’. The calculated results agree very 
well with the experimental results. 0 1997 Elsevier Science B.V. 

1. Introduction 

Various aspects of the irradiation-induced evolution of 
dislocation and void microstructures have been studied for 
a number of years both experimentally and theoretically. It 
has been a common practice to treat the problem of defect 
accumulation during irradiation within the framework of 
mean-field theory using chemical rate equations. In these 
standard rate theory (SRT) treatments, it is implicitly 
assumed that (a) the rates of defect production during 
irradiation are the same as those of the rate of displace- 
ment production given by the NRT model [ 1,2], (b) defects 
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are produced uniformly in time and space in the form of 
isolated single vacancies and self-interstitial atoms (SIAs) 
as Frenkel pairs and (c) the segregation of vacancies and 
SIAs occurs via the biased absorptions of single SIAs at 
dislocations. It should be noted that in these conventional 
treatments the biased attraction of SIAs (i.e., dislocation 
bias) is the only driving force for the creation of vacancy 
supersaturation necessary for the nucleation and growth of 
voids. 

However, under cascade damage conditions, none of 
the assumptions used in the conventional approach is valid 
because of a massive intracascade recombination and spon- 
taneous clustering of vacancies and SIAs already during 
the cooling-down phase of the cascades and subcascades 
(see Section 2 for details). It should be pointed out that the 
consideration of vacancy clustering in cascades was in- 
eluded in the rate theory treatment of void swelling by 
Bullough et al. [3]. Subsequently, several authors have 
investigated the consequences of vacancy loop [4-71 or 
‘microvoid’ [8] formation in cascades on the swelling 
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behaviour of metals and alloys within the framework of 
the BEK model. In the so-called ‘composite’ model [8], 
which is essentially the same as the BEK model, a damage 
production efficiency of N 0.3 is used to account for the 
intracascade recombination. However, even these modified 
treatments do not consider the influence of the sponta- 
neous clustering of SIAs within the cascade volume which 
is one of the most significant features of the cascade 
damage. Furthermore, these treatments, like the standard 
rate theory treatment, also rely on the dislocation bias as 
the only driving force for the creation of vacancy supersat- 
uration. 

Another way of testing the validity and applicability of 
the conventional rate theory approach (i.e., SRT and BEK) 
is to compare the predictions of this approach with the 
experimental results obtained under cascade damage condi- 
tions. It has been shown earlier [9] that the most significant 
features of the observed swelling behaviour such as (a> the 
high swelling rate at low doses, (b) a two tier temperature 
dependence of the steady state swelling rate and (c) the 
evolution of dislocation and void microstructures in a 
heterogeneous and segregated fashion cannot be rational- 
ized in terms of the conventional mean-field approach 
using dislocation bias as the only driving force. The analy- 
sis of the large differences in the defect accumulation 
behaviour between fee and bee metals has led to a similar 
conclusion [IO]. 

Recently, Singh et al. [ll] have determined the void 
swelling in pure copper irradiated with 2.5 MeV electrons, 
3 V protons and fission neutrons at 523 with a damage rate 
of N 5 X lo-* dpa/s. The swelling rate in the case of the 
electron irradiation (where defects are produced as Frenkel 
pairs) is found to be N 25 times smaller than that in the 
case of the neutron irradiated pure copper. It is interesting 
to note here that the swelling rate in the case of 2.5 MeV 
electron irradiated copper is in very good agreement with 
the results calculated in terms of the conventional standard 
rate theory [ 121 and dislocation bias. Once again, the 25 
times higher swelling rate observed in the neutron irradi- 
ated copper cannot be explained in terms of the conven- 
tional mean-field approach including the BEK model. In 
an effort to overcome these discrepancies and to be able to 
incorporate the physical features of the damage production 
in multidisplacement cascades and subcascades Woo and 
Singh [13,14] have recently proposed a new model called 
‘production bias model’ (PBM). The model takes explic- 
itly into account the consequences of intracascade recom- 
bination and spontaneous formation of clusters of vacan- 
cies and SIAs. Considerations of the formation of clusters 
and their thermal stability shows that there is a clear 
asymmetry in the production of single vacancies and inter- 
stitials. This yields a potent driving force for the creation 
of vacancy supersaturation and hence for the void swelling. 
The PBM also depends on the removal of SIA clusters 
which may occur via the one-dimensional glide of small 
SIA loops [ 15-181. The impact of glissile SIA loops 

produced in cascades on the evolution of dislocation and 
cavity microstructures may be included in the PBM [15- 
181. Furthermore, the PBM explains all main features of 
void swelling which could not be explained in terms of the 
SRT and BEK type of models [ 12,191. 

In the earlier calculations of defect accumulation in 
terms of production bias and glide of small SIA clusters 
[ 15- 171 a ‘mean size approximation’ was used for the 
evolving clusters and cavity populations. In the present 
treatment we consider the ‘size distribution functions’ to 
determine the evolution of sink strength, vacancy supersat- 
uration and void swelling in copper during neutron irradia- 
tion. The present approach not only provides us a more 
accurate estimate of the microstructural parameters and 
their dose dependence, but also allows us to evaluate the 
impact of the sessile-glissile loop transformation on the 
damage accumulation behaviour explicitly. The main phys- 
ical processes involved in damage production and accumu- 
lation is described in Section 2. The framework of the 
present calculations using the concept of production bias 
and one-dimensional glide of SIA clusters is presented in 
Section 3. The influence of parameters such as irradiation 
dose and pre-irradiation microstructure on the evolution of 
sink strengths and void swelling is calculated in Section 4. 
Whenever possible, the calculated results are compared 
with experimental observations. A brief summary and 
conclusions of the present work is given in Section 5. 

2. Damage production and accumulation 

Compared to the case of damage production in the form 
of Frenkel pairs, the process of defect production at rela- 
tively high damage energies in a multidisplacement cas- 
cade is rather complicated (see 1201 for a critical review) 
and has been a subject of investigations for a number of 
years. In recent years the structure of collision cascades 
has been studied by computer simulations using the binary 
collision approximation code MARLOWE as well as 
molecular dynamics (MD) [21-281. Both types of studies 
have shown that at higher damage energies vacancies and 
SIAs are generated with high local concentrations and in a 
very segregated fashion already during the collisional phase 
of the cascade damage. Once formed, the nascent damage 
state relaxes during the cooling-down phase and yields 
single point defects (SIAs and vacancies) and their clus- 
ters. It should be noted, however, that the segregated 
nature of the distribution of SIAs and vacancies is main- 
tained even at the end of the thermal spike phase such that 
the clusters of vacancies is formed at the centre of the 
cascade, whereas SIA clusters are formed at a certain 
distance from but around the vacancy cluster. MD simula- 
tions show that nearly one half of the defects produced 
survives in the form of clusters. The spontaneous forma- 
tion of SIA clusters directly in the cascade volume has 
been observed not only in MD simulations [22-281, but 
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has also been deduced from experimental investigations 
using diffuse X-ray scattering on neutron irradiated speci- 
mens at 4-6 K [29-321. 

Another important aspect of the intracascade clustering 
demonstrated by the MD simulations is that the small 
clusters produced in the cascades are highly glissile (e.g., 
[26,27]). An analysis of MD simulation results shows that 
about 15% of the SIA clusters produced in cascades during 
fission neutron irradiation of copper at temperatures in the 
peak swelling regime may be glissile [33]. Furthermore, 
indirect experimental evidence for the one-dimensional 
glide of small SIA clusters can be deduced from the result 
on the evolution of SIA clusters in the annealing stage II 
after low temperature irradiation with electrons [34] and 
fast neutrons [35,36]. 

Thus, it can be seen that the nature, morphology and 
disposition of the damage produced in multidisplacement 

cascades are fundamentally different from the damage 
produced in the form of isolated Frenkel pairs. Various 
fractions of surviving defects, singles and clusters, mobile 
and immobile, under cascade damage conditions are illus- 
trated schematically in Fig. 1. It should be noted that the 
surviving defect fraction consists not only of single vacan- 
cies and SIAs, but also of clusters of vacancies and SIAs. 
Thus, one of the most important features of the surviving 
defect fraction is the production of mobile SIA clusters. As 
shown in Fig. 1, the mobile SIA clusters are produced, not 
only in the cascades, but they are also generated continu- 
ously via transformation of immobile SIA clusters into 
mobile ones caused by the supersaturated flux of mobile 
vacancies (MV). It should be emphasized here that this 
transformation is of crucial importance since it ensures a 
continuous production and a permanent presence of mobile 
SIA clusters (MI&) during irradiation. 

Fig. I. Schematic illustration of various fractions of surviving defects under conditions of Frenkel pair (i.e. single defects) production and 
displacement cascade production where both single defects and defect clusters are produced. VC: vacancy cluster: IC: interstitial cluster; 
MV: mobile vacancy; MI: mobile interstitials; I,,,VC: immobile vacancy cluster; I,IC: immobile interstitial clusters; MIC: mobile interstitial 
clusters. 
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It is, therefore, imperative that any realistic theoretical 
treatment of the microstructural evolution and defect accu- 
mulation under cascade damage conditions must explicitly 
include considerations of the mobile and immobile defect 
fractions shown in Fig. 1. It is also clear from Fig. 1 that 
changes in the nature of damage production affecting the 
composition of the surviving defect fractions may have 
serious impacts on the damage accumulation behaviour. 

3. Production bias, one-dimensional glide and void 
swelling 

The theoretical treatment of the microstructural evolu- 
tion and defect accumulation under cascade damage condi- 
tions (see Fig. 1) requires a complicated system of kinetic 
equations. These equations should be capable of treating 
simultaneously two types of vacancy clusters (vacancy 
loops/tetrahedra and voids), two types of SIA clusters 
(sessile and glissile) and single point defects. Clearly, the 
resulting system of equations is qualitatively different from 
one which can be treated in terms of the SRT and BEK 
types of models. Furthermore, under cascade damage con- 
dition there is a non-symmetry not only in the production 
of mobile vacancies and SIAs but also in the thermal 
stability of SIAs and vacancy clusters. In addition, a 
fraction of SIA clusters produced in the cascades is capa- 
ble of performing one-dimensional glide which introduces 
the problem of diffusional anisotropy. These problems 
have been dealt with within the framework of production 
bias model and one-dimensional glide of small SIAs clus- 
ters earlier [13-191 and will not be repeated here. 

In the following, the problem of damage accumulation, 
particularly void swelling, is treated in terms of the pro- 
duction bias model and one-dimensional glide of small 
SIAs clusters using the following main assumptions: 

_ total generation rate of point defects is characterized 
by the value G,,, and is calculated using NRT model; 

- a fraction of point defects, &,, recombines during 
cooling stage of cascades so the generation rate of Frenkel 
pairs is G = (1 - E~)G~~~; 

- fractions of vacancies E, and interstitials E, form 
clusters; 

_ vacancy loops (or stacking fault tetrahedra) are im- 
mobile and are formed with fraction E,” = E”; 

_ vacancy clusters and voids evaporate vacancies at 
rates determined by the binding energies E,,(x) (loops) 
and E,(x) (voids); 

_ interstitials form both immobile (sessile) and mobile 
(glissile) clusters with fractions ~9 and cp (E, = 8: + &p), 
respectively; 

_ interstitial clusters of both types are thermally stable; 
_ interstitial clusters with sizes x < xp are glissile, 

larger than xc are sessile; 
- glissile interstitial loops take part in the long range 

one-dimensional diffusion and interact with point defect 
clusters, dislocations and grain boundaries; 

_ a sessile cluster transforms to a glissile one when its 
size decreases below x~+ , ; inverse transformation is ig- 
nored; 

_ all immobile clusters formed provide point defects 
sinks in addition to the preexisting edge dislocations; 

_ clusters change their size by capture and evaporation 
of the freely migrating point defects and by capture of the 
glissile loops; 

_ trapping of the glissile loops by the vacancy clusters 
can create freely migrating vacancies and interstitials. 

As was mentioned above in the present treatment the 
‘size distribution function’ will be used. The main reason 
for this is connected with a finite lifetime of the vacancy 
clusters (thermal evaporation) and SIAs clusters (capture 
of the supersaturated flux of vacancies) and the sessile- 
glissile loop transformation. In addition, it provides a 
possibility to account for an accurate energetic analysis of 
vacancy clusters (SFT). Such type of analysis has been 
previously used for the case of three-dimensional migra- 
tion of vacancy and SIAs only (see, for example, Refs. 
[6,37]). In the PBM model the situation is more compli- 
cated since it is necessary to consider three-dimensional 
migration of point defects (PDs) and one-dimensional mi- 
gration of glissile loops simultaneously. In order to gener- 
alize the previous description it is necessary to incorporate 
in the kinetic equations for the size distribution functions 
of the immobile clusters a correct description of the cap- 
ture of the glissile loops by these clusters (including 
voids). Some preliminary estimations of the cross-sections 
for such interactions have been made in [ 16,171 by using 
the mean free path approach; a more detailed description is 
given in [38]. 

3.1. Capture of’glissile loops 

Let us suppose that a glissile loop diffuses through the 
crystal lattice until it is trapped by any immobile defect 
(vacancy and SIA clusters, voids, edge dislocation or grain 
boundary) and that the mobility of the one-dimensionally 
diffusing glissile loops is comparable with that of the 
single SIAs. In this case, it is reasonable to neglect the 
interaction between the glissile loops and glissile loops and 
PDs (if the irradiation temperature is not extremely low). 
This means that the transitions between size classes in an 
assembly of the glissile loops and the transition of the 
glissile loops to sessile loops can be neglected too. In this 
case the kinetic equation for the glissile loops is trans- 
formed to a set of independent diffusion equations for each 
loop size, which are similar to the equations for PDs. With 
this approximation and taking into account that the sizes of 
the glissile loops are very small (x = 5-10, where x is 
number of interstitials in clusters) in the following it will 
be assumed that all glissile loops have the same size, i.e., 
x = xg (the delta function approach f&x, t) = 
C,ji,(t)S(r - x:)). 
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Thus, the diffusion equation for the glissile loop con- 
centration, C,(t), may be written as 

dC 
---E = G,(t) - D,C,(t)k$), 

dt (1) 

where Gg is the generation rate of glissile loops from all 
sources (cascades and due to sessile-glissile transforma- 
tion as the sessile clusters shrink below their minimum 
size); Dg and ki are the diffusion coefficient and sink 
strength, respectively. As was shown in [38], the total sink 
strength, ki, may be written as 

where p, d are the dislocation density and effective inter- 
action diameter, respectively; R, and 2 are the grain radius 
and distance from the grain boundary, respectively; ga( xl, 
f,(~, t) are the cross-section of the (Y type clusters with 
size x ((Y = i, vl and v for SIAs, vacancy clusters and 
void, respectively) and density of such type clusters, re- 
spectively. Note, that the sink strength of the grain bound- 
ary is different at different parts of the grain (minimum at 
the grain center) and is based on the assumption that the 
mean free path of the gliding loops is longer than the grain 
diameter. 

The rate of generation of a glissile loop may be written 
as follows: 

F;G 
G,(t) = x + Q,( xg + 1, t).fi( xg + 1, t) 

e 

+Q;(G t)f,.(x, t>)> (3) 

where Q,(x, t> is the efficiency for a vacancy to be 
trapped by the sessile SIA cluster of the size n; Q,“(x, t), 
Ql(x, t) are the efficiency for the glissile loop to be 
trapped by a vacancy loop and void of size x, respectively. 
The first and second terms on the right side of Eq. (3) 
represent the generation rate caused by the cascades and 
due to the sessile-glissile transformation. The third term 
corresponds to the reactions of the glissile interstitial loops 
with the sessile vacancy loops and voids (the multiplier 
(x, - x)/x, takes into account that the interaction of the 
glissile loops with the small vacancy clusters, x 5 xg - 2, 
produces a glissile loop with the size x < x,). 

Eqs. (l)-(3) can be used for the calculation of the 
glissile loop concentration under irradiation. For the de- 
scription of the evolution of the cluster size distribution 
functions we need to know the partial sink strength of the 

clusters of type (Y (= i, vl, v) with size x, ki,(x, t). In a 
modified mean field approximation [38] the function 
ki,( x, t) may be written as follows: 

k&.,(x) = %L(xJ) 

3.2. Kinetic equations 

3.2.1. Interstitial sessile loops 
With the assumptions given above and taking into 

account Eq. (4), the evolution of the size distribution 
function of the sessile interstitial loops, f,(x, t) (x is the 
number of interstitials in clusters) may be described by the 
following equation: 

df,( x, t) ~ =Iqx) +.qx- 1, t) -J,(x, t) 
at 

-P&L r)f,(x, t) (xa+ 11X12X,), 

= K,“(x) + J,( x - 1, t) - Ji( x, t) - Pg( x, t)f,( x, t) 

fP,(x-x,, t)f,(x-xx,, t), (,r>2x,), (5) 

where K;(x) is the generation rate of sessile interstitial 
loops in a cascade as a function of their sizes X, related to 
the value s,? by the following equation: 

);=cc 
c xK”( X) = $G. (6) 

*= rg+ 1 

In Eq. (5), J,(x, r> is the flux of the clusters in the 
space of the cluster sizes (see [39]), P&x, t) is the 
trapping efficiency of a glissile loop by a sessile SIA loop 
of size X. 

J,( .r, t) 

= P,(r. t)f,(x, t)-Q,(x+l,t)f,(.r+l, t), 1 

-Qi(X+l, t)f,(x+l, t)> X=X %’ 
x> x,, 

(7a) 

Pi(x, t) = W,x”‘Z;“D,C,(t), 

Qi( x, t) = W,x”‘Z;D,C,( t), 

w, = (4Tr/( fibi))“?, (“b) 

k, D&( t)x2’3. (7~) 

In Eq. (7b) the efficiencies for trapping of SIAs and 
vacancies by SIA loops are assumed to be proportional to 
the loop circumference, Zy and Zt are the corresponding 
efficiency factor for SIAs and vacancies; C, and C, are the 
concentrations of freely migrating SIAs and vacancies, 



112 B.N. Singh et al./Journal of Nuclear Materials 251 (1997) 107-122 

respectively; D, and D, are the diffusion coefficients of 
SIAs and vacancies, respectively; bi is the Burgers vector; 
(2 is the atomic volume. In Eq. (7c), Ca and Dg are the 
concentration and the diffusion coefficient of the glissile 

loops; k, = K h w ere ki is the total sink strength for the 

glissile loops; T and T, are irradiation and melting tem- 
peratures, respectively (see Refs. [16,17]). 

The multiplier qi is a correction factor which is intro- 
duced since Eq. (7~) for oloOP was obtained (see [ 16,171) 
by using some approximations of the elastically isotropic 
effective medium and, consequently, it can be considered 
as a qualitative estimate of the cross-section rather than a 
quantitative description. The multiplier 7, may be used as 
a parameter which can be chosen by fitting the calculated 
results to the experimental ones. Index i for the parameter 
77, is used since SIA and vacancy clusters have the differ- 
ent structures (loops in the case of the SIA clusters and 
frequently stacking fault tetrahedra in the case of vacancy 
clusters) and, consequently, the appropriate cross-sections 
have to be different. This is the reason why the parameter 
77, will be introduced for the description of the cross-sec- 
tion, ggv’, for the interaction of the glissile loops with 
vacancy clusters in a similar manner. 

It should be noted that the kinetic Eq. (5) accounts for 
the fact that the minimum size cluster which can be 
produced due to the reaction between the sessile and 
glissile cluster is the cluster of size x = 2x, + 1. 

3.2.2. Vacancy loops 
The evolution of the size distribution functions of 

vacancy loops, f,,(x, t) may be written in the same 
manner as Eq. (5): 

- Q;'( x, t)f,,( x, t>, (x 2 213 @aI 
x=x 

c xK:( x) = E;G, (8b) 
I= 2 

where KG(r) is the generation rates of vacancy loops of 
size x in a cascade; J,,(x, t) is the flux of the vacancy 
loops in the space of the cluster sizes and Q~‘(x, t) is the 
efficiency for a glissile loop to be trapped by the vacancy 
loops of size X, respectively: 

J”l(X, t) 

-Q,,<x+ 1, r)f;,(x+ 1, t)> x= 1, 

Pa) 

-Q,,(x+ 1, t)f,,(x+ 1, r), x2 2, 

where 

P,,(x, t) = N’,,x”‘Z:vD,C,(r), 

Q,t( X, t) = W,, x”‘( ZTDiCi( t) 

+Z:YDy exp( -&(x)/k~T)) 

= Qt., + Q:, > 

w,,, = (4r/(flb,))“‘, 

and 

(9b) 

PC> 
In Eqs. (9a>, (9b) and (SC), Zy and Zy are the cluster 
capture efficiencies of SIAs and vacancies; E,,(x) is the 
binding energy of a vacancy to a vacancy loop of size X; 
b, is the Burgers vector. 

Two comments need to be made to emphasize the 
special features of Eqs. (8a) and (9a): (i) the flux J,,( X, t) 
is formally negative at x = 1 since the homogeneous nu- 
cleation of the vacancy loops connected with the interac- 
tion between two vacancies is neglected because this reac- 
tion is used for void nucleation; (ii) the interaction of 
glissile loops with vacancy clusters of sizes x I xg + 1 
have to be accounted for as sources of the mobile defects. 
In the case of trapping of a glissile loop by a vacancy loop 
of the size xs - 1 an interstitial atom returns back to the 
interstitial subsystem; at trapping of the glissile loop by the 
vacancy loop of the size xg + 1 a vacancy returns back to 
the vacancy subsystem. At x < xg - 1 these reactions do 
not let the glissile loops disappear and they need to be 
accounted for in the equation for the generation of glissile 
loops (Eq. (3)). Note that a similar situation will arise in 
the case of the interaction of a glissile loops with a void of 
size .Y I xg + 1. 

3.2.3. Voids 
The nucleation of voids, in contrast to vacancy loops, 

will be treated below as a quasi-homogeneous nucleation 
only. This means that the void nucleation is described as a 
homogeneous nucleation but the real binding energy of a 
vacancy to voids is changed to an effective one (E,(x) --f 
E:“(x)). The effective binding energy, Eeff(x>, has been 
chosen by fitting the experimental data on void concentra- 
tion. In this case the evolution of the size distribution 
function of the voids, f,(x, t), may be written as follows: 

W”,(X> t) 
at 

=J,(x- 1, r) -J,(x, t) 

+QH(~+x~,t),f"(x+x,,t) 

- Q,"(x> f>fv(x, f> (x22), (10) 
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where J,(x, t) is the flux of the voids in the space of the 
cluster sizes and Q$( x, r) is the efficiency for the glissile 
loop to be captured by the voids with the size x. J,(x, t) 
and Q,“(x, t) are given by 

J,( x, r) = P”( X, t>f”( X, t) 

where 

-Q,(x+ 1, r)f,(x+ 1, t>> (lla) 

P”( x, t) = W” x”3Dici( t), 

Q,(x, t) = W,x”“[ DiCi(t) 

+ D, exp( --E&~~( x)/k,~)] 

= Q:( x, t) + Q:(x), 

W” = (481T702)1’3, 

and 

(llb) 

2’3 keXz’sD,C,(t) 

n (‘ICI 

3.2.4. Equations for SIA and vacancy concentrations 
The evolution of the point defect concentrations (SIAs 

and vacancies) may be described in terms of the following 
equation: 

dC,(t) 
- =Gv(t) - P,Di(t)Ci(f)Cv(t) -Au(‘) dt 

(u=i,v), (12) 

where G,, G, are the generation rates of the SIAs and 
vacancies respectively; pa is the recombination coefli- 
cient; Ai and A, are the capture rates of the SIAs and 
vacancies by the dislocations and PDs clusters. Taking into 
account Eqs. (5), (8a) and (10) the values G,, G, can be 
given by 

Gi(t)=(l-&,)G+Q~(~~-l,‘)f~(Xs-l,’) 

-i-Q;+,- 1, f)fv,(x,- 1, r), (13a) 

and 

G&)=(1-~,)G+Q;(x,+l,t)f,(x,+l,~) 

+Q;‘(x,+ 1, r)f&+ 1, r) 

+ 2Q:(2, t>&(2> t) + 2Q:(2> t)f,(2, t) 
*= 1 

+ c (Q,Y’(x, l)fy,(x> t) 
X=3 

+Q:(x. ~).L(x. r)). (13b) 

The first terms on the right hand sides of the Eqs. (13a) 
and (13b) represent the generation rates of the mobile 
defects created by the cascades. The second and third 
terms correspond to the reactions of the glissile loops with 
the vacancy loops and voids. The rest of the terms of the 

equation for the vacancy concentration describe the ther- 
mal emission of vacancies from vacancy loops and voids. 

The quantities Ai, A, may be written as follows: 

Ai( t) = pZfL+C,( t) + 2Pi( 1, t)fi( 1 
,r= z 

+ C pi(x, t)fi(x3 t, 
x=x,+1 
x=-L 

+ c (Q;(G f)fv(,, t) 
I(= 2 

+Q:,,(x> t)f,,(x> f)), 

The first terms on the right hand side of Eqs. (14a) and 
(14b) represent the capture rates of point defects by the 
dislocations, where Zf and Z,” are the dislocation capture 
efficiencies of SIAs and vacancies, respectively. The sec- 
ond terms correspond to the nucleation of the di-intersti- 
tials and di-vacancies, respectively. The rest of the terms 
represent the capture rates of the point defects by the PD 
clusters. 

The set of Eqs. (l)-(14) describes the evolution of the 
microstructure under cascade irradiation ( ci, E, f 0) as 
well as under irradiation when the displacement damage 
occurs exclusively in the form of Frenkel pairs. In the case 
of Frenkel pair production where E: = 0, E: f 0, xg = 1, 
the equations given above describe what is called ‘two 
interstitial model’ when the SIAs are generated by irradia- 
tion in the forms of dumbbells and crowdions simultane- 
ously. In the case when .sf = 0 we return to the conven- 
tional ‘one interstitial model’ (dumbbells) with the homo- 
geneous nucleation of SIA clusters and voids. 

The set of the equations given above represents a 
complicated system of coupled non-linear differential 
equations which can be solved by numerical methods only 
when a set of appropriate initial and boundary conditions 
are assumed. These conditions will be taken in the follow- 
ing form: 

f,(x, t=O)=O (x2x,+ I), 

,f,,(x,f=O)=O (.X22), 

f”(X,t=o)=c,,s(x-I) (x21), 

C,(t=O)=C,,, Ci( t = 0) = CJ f = 0) = 0, (lsa) 

.fi(X= 1,r) = C,(r), f,,(.x= l,t)=O, 

.f”(x= lJ> =C,,(t>, 

,A( X = m,r) =f;,( x = m,t) =fr( x = m,t) = 0. (15b) 
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where C,, is the thermal equilibrium vacancy concentra- 
tion; a(x) is the delta function. 

To accomplish the calculation, it is necessary to choose 
appropriate binding energies of a vacancy with the va- 
cancy loops, E,,(x) and voids, Etff( X) and to fit the large 
number of parameters involved in Eq. (1)-Eqs. (14a) and 
(14b). But in order to get insight into the main trends of 
the buildup of the point defects and point defect clusters 
under cascade irradiation and to clarify the main features 
of PBM model, it is useful to consider a simple case when 

- the reactions between the glissile loops and the 
point defect clusters are neglected; 

- glissile-sessile transformation is neglected; 
- void nucleation is not considered but instead we 

adopt that void density is constant; 
- binding energy of vacancies with the vacancy loops 

does not depend on cluster size E(x) = E. 

Table 1 
Parameters used in the calculation 

NRT displacement rate lo-’ dpa/s 
Recombination fraction, .sI 0.9 
Effective displacement rate, G IO-* dpa/s 
Fraction of SIAs deposited in 0.1 
sessile clusters, .s: 

Fraction of SIAs deposited in 0.2 
glissile clusters, zf 

Fraction of vacancies deposited 0.50 
in sessile clusters, E, 

Minimum number of SIAs in 6 
sessile cluster 

Maximum number of SIAs in 25 
sessile clusters 

Maximum number of vacancies 30 
in sessile clusters 

Maximum number of SIAs in 5 
glissile loops, xg 

Recombination coefficient, pa 5X IO*” m-* 
Atomic volume, R 12X 10d30 m3 
Burgers vector, h 2.5~ lo-” m 
SIA diffusion coefficient, D, 

pre-exponential, Dp [48] 1 X 10e6 m’/s 
migration energy, &“’ [48] 0.117 eV 

Glissile loop diffusion coefficient, Dg 
pre-exponential, 0,” 1 X lo-’ m2/s 
migration energy, I?:’ 0.117 eV 

Vacancy diffusion coefficient, D, 
pre-exponential, Dt [48] 2X 10m6 m2/s 
migration energy, EF [48] 0.7 eV 

Self-diffusion coefficient, 0:” 
pre-exponential, Did [48] 1 X 1O-5 m2/s 
self-diffusion energy, ESd [48] 1.98 eV 
formation entropy, ST [48] 1.6ka 

Dislocation density, p 1-5X IO” m-2 
Grain radius, R, 35 pm 

‘For the reason that these parameters are unknown now they have 
been taken to be equal to the parameters for the SIA. 

In this case, the equation for c,(t) and the system of 
equations for point defects and PD clusters can be consid- 
ered separately since the glissile loops will be captured by 
the grain boundary and dislocation only. A full analysis of 
this case has been given in 1391 and in the following only a 
brief description will be presented. 

3.3. Steady state 

Summing the left and right sides of Eqs. (5) and (8a) 
over x from x = 2 to x = 30 we find an equation for the 
concentration of the PD clusters Cam(t) = C:I,“f,( x,t), 

dC”,(t) &iG 
___ = m +J,(l,t), 

dt 
(a=i, VI), (16) 

where (xi> = C:~~xK,(x)/C:~~K,(n) is the mean size 
of the type (Y sessile clusters generated by the cascades. 
The SIA clusters containing a minimum of six SIAs are 
considered to be sessile (Table 1). Multiplying left and 
right hand sides of Eqs. (5) and (8a) with x and summing 
over x from x = 2 to x = ~0 we find an equation for the 
total number of point defects N,(r) = Cc: y xS,< x, t> accu- 
mulated in the clusters 

d&(t) *= = 
-=~;G+.l,(l,t)+ C .la(x,t). (a=i,vl). 

dt 
‘I= 1 

(17) 
Summing the left- and right-hand sides of Eqs. (16) and 

(17) we find the following equations for the total number 
of point defects accumulated in a crystal under irradiation: 

d(C1 +W 
dt 

=(l -&$)G-DiCi(D+Zfp) 

-( /.+DiCiC, + Zf’D,C,k;, + Z,=DiC,k;,), 

(Isa) 

d(C, + N, > 

dt 

=G-D,C,(D+Z,dp) 

- ( /_L~ D, Ci C, + ZFD, C, k;, + Z,=D, C, k;“), 

(18b) 

where k$(t> and k:,(t) are the sink strengths of the 
vacancy and interstitial loops, respectively and D = 
4rrNO( re) is the sink strength of voids. The sink strengths 
IcEi and k:,(t) are given by 

*=5 
kii( r) = W c x”2fi( x,t); 

*=2 
x=cc 

k;,(t) = W c ~“~f,,(x,t). 
r=2 

(19) 
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Now let us assume that the buildup of PDs and their 
clusters is fast compared with the evolution of the sec- 
ondary microstructure consisting of dislocations and voids 
such that the sink strengths of the latter may be taken to be 
constant parameters. This means that the left hand sides of 
the equations given above can be taken to be equal to zero. 
For steady state, Eqs. (18a) and (18b) yield 

(1 - &,g)G = DiCi( D + Z;p) + /_+DiCiC, 

+ Z”D ” C k2- + Z.“D.C k2 “““I 1 IIn”, (20a) 

G = D,C,( D + Ztp) + pRDiCiCv + Z:D,C,k;l 

+ Z”‘D C k2 I IIlL”’ (2Ob) 

where Zp and Z,” are the sink efficiencies of the disloca- 
tions for SIAs and vacancies, respectively; p is the dislo- 
cation density. Eqs. (20a) and (20b) generalize the rate 
equations for the case under consideration. A few com- 
ments need to be made to emphasize the difference be- 
tween Eqs. (2Oa) and (20b) and the usual rate equations. 
As was mentioned above, among the values E:, &$, &,” 
only the fraction of the glissile loops &$ is explicitly 
incorporated in Eqs. (20a) and (20b). This means that 
vacancy supersaturation, which is proportional to D,C, - 
DiC,, does not depend explicitly on the values of E;’ and 
ct. The last two terms on the right hand sides of Eqs. 
(20a) and (20b) which describe the reactions between PD 
and their clusters (and third terms as well) are equal. This 
shows that the rates of accumulation of vacancies and 
SIAs in vacancy and interstitial clusters are equal, in 
contrast to their absorption by the dislocations and voids. 
In other words, the PD clusters are the real ‘neutral sinks’ 
and have to be considered as centers of point defect 
recombination. 

It is necessary to note that if the fraction of the sessile 
interstitial clusters, &,‘, is not equal to zero, the steady state 
Eqs. (2Oa) and (20b) is correct in the case when the 
fraction of the glissile loops, &g, is not equal to zero. In 
the opposite case when &P = 0, the steady state does not 
exist at all and Eqs. (2Oa) and (2Ob) cannot be used (see 
below). 

Using Eqs. (20a) and (20b) the net excess of the point 
defect fluxes to the voids and dislocations, D,C, - DiC,; 
Z, D,.C, - Zi D,C,, may be represented as follows: 

G 
D,C, - D,C, = c+----- +P 

Z;D,C, P 

D + Z,dp D+Z;p ’ (21a) 

Z;G 
Z,“D,C, - Z,pD,C, = ~,p--- - 

Z;D,C, D 

D+Z;p P D+z;p ’ @lb) 

where p = (ZId - Z,“>/Z,” is the bias factor for the disloca- 
tions. The first terms on the right hand side of Fqs. (21a) 
and (21 b) correspond to the effect of the cascade produc- 
tion bias. The second terms correspond to the effect of the 
dislocation bias. Note that the first terms are dependent on 
the sink strengths of the dislocations and voids only, in 

contrast to the second terms which are dependent on the 
vacancy concentration and consequently on the sink 
strength of all traps including PDs clusters. For fully 
annealed metals, the dislocation density is very low and 
the second terms in these equations are negligibly low. In 
this case, we can take Zi = Z, = 1 (p = 0) and find the 
following expression for the vacancy supersaturation: 

(22) 

As was shown in Refs. [6,7], the steady state size 
distribution function of PD clusters can be represented in 
the following form: 

m=c’ Pa(m) -=latI<x-1 (cr=i,vl), 
m=t Q,(m) (23) 

where J,,(x) is the steady state flux of the clusters 
m=m 

J,,(x)=- C K,(m), (o=i,vl). (24) 
/n=.*+ I 

The first term on the right hand side of Eq. (23) 
represents the effect of homogeneous nucleation of clusters 
and the second one represents the effect of the intra-cascade 
cluster generation. For the interstitial clusters, (Y = i, the 
first term is very small when the intracascade clustering of 
SIAs is very efficient and therefore can be neglected. For 
the vacancy clusters the first term is small too if the 
temperature is not very low. 

Substituting Eq. (23) in Eq. (19) and using Eq. (22), the 
sink strengths of the PD clusters, kf,, ki, , can readily be 
represented in the following form: 

Wa) 

k2 = 
E:G I 

II” D e-~/“~r(D+p)-~FG(D+p) 
” i -1 ‘- (X;,) 

WI 
Eqs. (25a) and (25b) show that the values of k,‘, are 
directly proportional to the fractions of the sessile clusters, 
E,” generated by the cascades particularly when the second 
term in Eq. (21b) is small. The value kz, is directly 
proportional to the total sink strength of the dislocations 
and voids and inversely proportional to the fraction of the 
glissile loops 8,” and it follows that kz, -+ 30 when .s,” + 0. 
In the case of the vacancy clusters kz, will be finite as 
long as the denominator on the right-hand side of Eq. 
(25b) is positive. In other words, the steady state of the 
system of the point defects and PD clusters does not exist 
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at all if cf = 0 or D, exp( -E/L,T)( D + p) < EBG. The 
last relation is right if the value of E fulfills the following 
condition: 

E>k,Tln 
D”O(D + P> 

F;G 
-E,“, 

where D,,, E,” are the preexponential factor and migra- 
tion energy for the vacancy diffusion coefficient. 

As is shown in Ref. [39], the same analytical analysis 
can be done for the case when the sessile-glissile transfor- 
mation is taken into account. In this case, the steady state 
equation for the SIAs, vacancy supersaturation and sink 
strength for SIA clusters can be described by Eqs. (20a), 
(2la), (2lb), (22) and (25a), respectively, if the fraction 6,” 
is replaced by the effective value glg,eff = ~6 + E:x~/( xi;). 

The analysis presented above shows that the damage 
produced in cascades is qualitatively different from the 
damage produced in the form of isolated Frenkel pairs. 
Cascade generation of the stable SIA clusters and one-di- 
mensional glide of small ones is a potent driving force for 
the creation of a high level of the steady state vacancy 
supersaturation at low dislocation densities. It should be 
emphasized that the production of mobile SIA clusters is 
crucially important for the creation of the steady state 
vacancy supersaturation, as can be seen from Eqs. (2la) 
and (21b). If the fraction of the glissile loops .Y,” --j 0 the 
sink strength of the SIA clusters, as can be seen from Eq. 
(25a), increases without limitation, as was found in Ref. 
[ 151 for &f. As a result, the SIA clusters become the 
dominant sinks for point defects at very low doses and the 
level of the vacancy supersaturation decreases substantially 
when dose increases. This means that in the case &f = 0, 
when all SIA clusters are sessile, the cascade production 
bias loses its strength very fast and, as was demonstrated 
in Ref. [ 151, cannot explain the experimental observations. 
This is a significant feature of the PBM model - the real 
driving force for the vacancy supersaturation, and, conse- 
quently, for void swelling at higher doses, arises only if 
some mechanism for cluster removal is included. Above, it 
has been assumed that the cluster removal occurs by 
one-dimensional glide. In the following it will be shown 
that this removal mechanism allows us to explain all main 
features of void swelling of Cu under neutron irradiation. 

4. Different aspects of damage accumulation 

4. I. Dose dependence 

Within the framework established above we can now 
calculate the temporal evolution of point defects, PD clus- 
ters and void swelling. In order to illustrate the transient 
behaviour of the size distribution function of the SIA 
clusters, buildup of the vacancy supersaturation and the 
sink strength of PD clusters (and to compare with the 

analytical results) the set of equation given above has been 
numerically integrated. The calculations are carried out for 
fully annealed Cu with the parameters given in Table 1. 
Note that the calculations have been made neglecting the 
(elastic) dislocation bias (Z, = Z, = 1, p = 0) since the 
calculated results do not depend to any significant extent 
on the value of the parameter p when the dislocation 
density is low. 

Figs. 2 and 3 show the dose dependence of the size 
distribution of the sessile SIA clusters, f,(x, t), and the 
effective vacancy supersaturation at different doses, re- 
spectively. For the sake of simplicity, the calculations are 
carried out when voids are absent. As can be seen in Fig. 
2, the form of the size distribution at 10p8 NRT dpa is 
similar to that of the generation rate, ( Ki(x) - 1 /xl, since 
the first term on the right hand side of Eq. (5) is much 
larger than the other ones. At the larger doses the form of 
the distributions changes slightly due to the interaction of 
the SIA clusters with point defects. As a result, the mean 
size of the clusters becomes smaller than the value ($> 
due to capture of excess of vacancies by the SIA clusters. 
At about lop5 NRT dpa (for a given dislocation density, 
p) a steady state size distribution, f,(x), given by Eq. (231, 
is reached. 

The effective vacancy supersaturation (Fig. 3) SJ= 
1 D,C, - DiC,I/DSD at very low doses is negative since 
the vacancies have not reached steady state. Similar results 
obtained using the mean size approximation have been 
described in Refs. 116,171. 6J becomes positive when 

102’ I 11 I’/ 

CU 523K 

(4) 

Dose CNRT &a) 

(1) 1o-8 
(2) 1om7 
(3) 1o-6 
(4) 1o-5 

p=lO”m-” 
E,'=o. 1 

&,g=o.2 

lOI 1 I ,,,,I 1 
0.5 1.0 2.0 
CLUSTER DIAMETER (nm) 

Fig. 2. Examples of size distributions of sessile interstitial clusters 
calculated for different dose levels for the simplest case when 
voids are absent. The largest size of SIA clusters produced in the 
cascade is taken to contain 25 interstitial atoms. Note that the 
steady-state size distribution given by Eq. (23) has been reached at 
a dose level of _ IO- 5 dpa. 
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Fig. 3. Dose dependence of vacancy supersaturation for different 
dislocation density calculated for the same condition as in Fig. 2 
(i.e., without voids). The broken lines refer to the steady-state 
vacancy supersaturation values calculated analytically from Eq. 
(22). An example is shown for the case when the effect of 
sessile-glissile transformation is included (curve 3). Note that the 
vacancy supersaturation reaches a maximum at intermediate dose 
levels. The general features of the dose dependence calculated in 
the present work are very similar to those reported earlier [ 161 
using the ‘mean size approximation’ 

vacancies reach steady state, increasing to a late steady 
state value (see Eq. (22)) by passing a maximum. Such 
nonmonotonic behaviour of the vacancy supersaturation 
occurs when the point defects have reached steady state in 
cases where the SIA loops number density is still increas- 
ing. The reason for this is that the value of the maximum 
and time interval for reaching steady state value 6./ de- 
pend on the dislocation density, p. This transient be- 
haviour of the vacancy supersaturation with very high 
level could be very important for the void nucleation. 

Fig. 3 also shows the temporal change in the value of 
6.l for the case where the sessile-glissile transformation is 
taken into account (line 3, Fig. 3). It can be seen that the 
vacancy supersaturation has increased in this case since the 
effective volume fraction of the glissile loops becomes 
much higher than the value c$. 

The calculated results for a more realistic case when 
void growth is taken into account are presented in Fig. 4 
where the evolution of the sink strengths of the SIA and 
vacancy clusters and voids together with the vacancy 
supersaturation are plotted. The buildup period of the sink 
strengths may be divided into three stages. 

(1) The sink strengths of all clusters increase monotoni- 
cally at low doses despite the fact that the vacancy super- 
saturation is negative at doses smaller than about 2 X 10P6 

dpa. For the SIA clusters and vacancy loops this is related 
to the cascade generation. In the case of voids, on the other 
hand, this is related to the homogeneous nucleation of a 
high density of very small voids. 

(2) In the dose interval 2 X 10P6-lo-” dpa, the be- 
haviour of the sink strengths of the SIA clusters and voids 
does not depend monotonically on dose because of the 
high level and non-monotonical dose dependence of the 
vacancy supersaturation in this dose range. This behaviour 
occurs since the point defects have reached steady state 
faster than the SIA clusters number density generated by 
the cascades. The sink strengths of the vacancy clusters 
reach the maximum monotonically, in contrast to that of 
SIA clusters since the steady state size distribution of 
vacancy clusters due to the high efficiency of the thermal 
evaporation of the vacancies is established faster than it is 
in the case of the SIA clusters. 

(3) At steady state (doses larger than 10PJ dpa) the 
sink strength of the voids, D, increases since the vacancy 
supersaturation is positive due to the cascade production 
bias. The sink strength of the SIA clusters, kz,, varies 
directly with the sink strength of the voids which is in 
accordance with the analytical treatment given above (kz, 
- ( p + D) - D in the case p K D). This behaviour is due 
to the decrease in the flux of the excess vacancies to the 
clusters (which is proportional to the vacancy supersatura- 

5 
(/, 10'0 

IO9 

- Ey=0.2 (3) D i 
10’ 

Fig. 4. Dose dependence of sink strengths of interstitial loops, 
vacancy loops and voids (D) and of the vacancy supersaturation 
in the presence of voids. Note, that the sink strength of SIA loops 
beyond the transient regime increases with dose in parallel with 
that of the voids which is in agreement with the analytical 
prediction (Eq. (25a)) for the steady state. 
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tion), restricting the number density of the clusters gener- 
ated by the cascades. For the same reason, the sink strength 
of the vacancy clusters, ki, in contrast to the SIA clusters 
and voids, decreases with dose in quasi-steady state. 

Fig. 5 shows a quantitative comparison of the dose 
dependence of the measured (see Refs. [ 1540-461) and the 
calculated void swelling for the center of a grain (1 = R,, 
see Eq. (2)). The calculations have been performed for 
three different cases: (i) no cluster motion (broken line); 
(ii> the glissile loops are captured by grain boundary and 
dislocations only (dash-dot line); (iii) in addition to the 
grain boundary and dislocations the glissile loops are 
captured by voids as well (solid lines for two void densi- 
ties). Note that the capture of the glissile loops by the SIA 
and vacancy loops has not been considered in the present 
paper. 

As mentioned above the broken line in Fig. 5 corre- 
sponds to a case when all SIA clusters have been assumed 
to be sessile (E: = 0, ~9 = 0.3). In accordance with the 
results of analytical treatment given by Singh and Foreman 
[15], the swelling follows a power law variation with dose 
S = (Gt)3/s since the void density is constant at doses 
large than 10m4 dpa. However the predicted swelling is 
much lower than the experimental value. This shows that 
the cluster removal by glide plays the key role in the point 
defect accumulation under irradiation. 

The situation changes completely in the second case 
(dash-dot line) when the glissile loops are captured by 
grain boundary and dislocations only (&g = 0.2, E: = 0.1). 

523K 

_ Experiments 

&;=o.l - N =102’m-3 

&y=0.2 ~ N”=j020m-3 Y 

Fig. 5. Dose dependence of void swelling calculated for copper at 
523 K for NV = 10’” me3 and NV = 10” m-j; in these calcula- 
tions, the effect of interaction between gliding loops and voids is 
included. The dash-dot line on the top refers to the calculation 
when the gliding loops do not interact with the voids (NV = 102’ 
me3). For comparison, swelling results for neutron irradiated 
copper are also shown ([15,40-461). 

In this case the dose dependence of the swelling predicted 
by our calculation is in agreement with the experimental 
results in the dose range below lo-* dpa and overesti- 
mates the magnitude of swelling at higher doses. This 
shows that the capture efficiency of the voids as sinks for 
the glissile loops become comparable to that for the grain 
boundary and dislocations since the capture of the glissile 
loops by voids would reduce their growth rate. It is 
obvious that the swelling rate will be minimum when the 
capture efficiency of PD clusters as sinks for glissile loops 
is much smaller than that of the voids. This is the reason 
why this case has been considered in the present paper. 

In the third case the calculations are carried out for the 
same parameters $ = 0.2, .e: - 0.1 but for two different 
number densities of voids N,,. The general trend predicted 
by our calculations is that the swelling rate is higher at low 
doses than at higher doses which is in very good quantita- 
tive accord with the experimental data for Cu [9]. As can 
be seen from Fig. 5, the deviation of the swelling curves 
from the dash-dot line occurs when the swelling reaches 
the value of about S, = lo-‘%. This means that the 
capture of the glissile loops by the voids at that level of 
swelling becomes so high that they begin to compete with 
the grain boundary (the sink strength of dislocations at 
p= 10” m -’ is much smaller than the sink strength of 
grain boundaries (R, = 35 pm). It can be shown that the 
efficiency of the voids as a sink for glissile loops is 
determined by the ratio of the total cross-section of the 
voids, or,’ NV, to that of the grain boundary, v!f/R,. If 
we assume that the deviation becomes visible when this 
ratio achieves the value of about 0.1 and taking into 
account that the swelling is equal to S = 4+rrr’N,/3, it is 
easy to estimate the value S, as a function of a grain radius 
and the void density S, = 0.04N-‘/‘R-3/2. At R = 35 
pm and NV = 1O’e and 10 2’ this‘gives iwelling valies of 
3.57 X 10e4% and 1.13 X lo-“%, respectively, in good 
agreement with our calculations. 

4.2. Influence of pre-irradiation microstructure 

In order to investigate the influence of the grain size on 
the void swelling, Singh et al. have recently carried out 
irradiation experiments on high purity Cu in single crystal, 
polycrystal and cold-worked conditions [47]. Samples of 
these materials in the form of 3 mm diameter disc (0.3 mm 
thick) were neutron irradiated at 623 K to a dose level of 
- 0.3 dpa. The post-irradiation TEM investigations showed 
that the cold-worked copper had recrystallized even before 
the reactor was brought to full power (10 MW). In other 
words, the cold-worked specimens were irradiated in re- 
crystallized state with grains of sizes in the range 0.5-5 
pm. The average size in the annealed (823 K/2 h) poly- 
crystal copper was found to be _ 30 pm. Both TEM and 
positron annihilation investigations demonstrated that the 
void swelling increased markedly with decreasing grain 
size (the effective grain size for the single crystal specimen 
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was taken to be one half of the irradiated specimen thick- 
ness, i.e., - 150 km>. 

In order to understand these results, calculations have 
been performed to determine the void swelling in the grain 
centres as a function of grain size. In these calculations, 
the same set of parameters which were used in the previ- 
ous calculations to obtain the results shown in Fig. 5 was 
used. Fig. 6 shows a quantitative comparison of the mea- 
sured [47] and the calculated void swelling. It should be 
mentioned that the calculated swelling for R, = 2.5 pm 
[47] is found to be slightly higher than that for R, = 5 pm 
and becomes zero for R, I 0.25 pm. The general trend of 
the void swelling predicted by our calculation is in good 
quantitative agreement with the experimental results in that 
the swelling increases when grain radius decreases. This is 
significant because such a behaviour cannot be predicted 
using the dislocation bias as the only driving force for the 
swelling. 

4.3. Analytical treatment 

The results of calculation presented in Figs. 5 and 6 
have been obtained by numerical integration of the equa- 
tions established above, including Eq. (10) for the size 
distribution function of voids. It has been demonstrated 
that in the framework of PBM model it is necessary to take 
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Fig. 6. Dose dependence of void swelling calculated for copper 
for an irradiation temperature of 623 K and for three different 
grain sizes and void densities (see text for explanation). Note that 
the swelling increases with decreasing grain size as found experi- 
mentally in the neutron-irradiated copper at 623 K to a dose level 
of - 0.3 dpa. Experimental results for 0.3 mm thick single 
crystal, R, = 150 pm (~1, polycrystal, R, G 15 km (0) and 
cold-worked and recrystallized, R, I 0.25-2.5 p,rn ( ??) polycrys- 
tal are shown [47]. 

into account the capture of one-dimensionally gliding SIA 
loops together with three-dimensionally diffusing vacan- 
cies and SIAs by voids. In general case, when the glissile 
loops are captured by all PD clusters, the calculation of 
swelling can be done by numerical methods only. But in 
the particular case considered above, when the interaction 
of the glissile loops with vacancy and SIA loops is negligi- 
bly small, analytical calculations of the swelling can be 
done. Indeed using mean size approximation the swelling 
rate in this case may be written as 

dS(t) 
___ = o(r)( &c”(t) - o,c,(t)) dt 

- ~,C,(r)x,~,(t)~“(t)NY(r), (27) 

where u,(t) = TRt(t) (NV, R, are the density and mean 
radius of voids); D(t) = 4a R,( t)N,. It can be shown that 
in the case when the sessile-glissile transformation takes 
place the excess flux of vacancies and the concentration of 
glissile loops at the steady state can be represented as 

(D,c,-Dici)=(l -E.)(E:!+F:x*,(x;))+$ 

(28) 

Using Eqs. (28) and (29) the swelling rate can be given as 

c = (1 - E,)( ~,g + $xg/( x;))G,,, 

[ 

D(t) dt> X _~ 
D(t) + P kg(t) 1 

(30) 

Taking into account the relations between D, a, and S 

D = 3fi(4nNV)2”S1/3, 0; = (3/4)“3(~NV)“3S2’3, 

(31) 

and representing the total reciprocal free path k (t) as 

k,(t) = ki + g”,(t), where kz = /2/1( 2 R, - 1) + 

nddis p/4, Eq. (30) can be transformed to a differential 
equation for the function S(r): 

q =(I - E,)(Ef+F;xg/(x;))GNRT 

[ 

cd"3 psv3 

X 
1 + CC?‘3 - 1 + ps2’3 ’ 1 

where 

(32) 

(48)“‘(~N,)~‘~ 
(Y= 

P ’ 

p = (3/4)“‘(~N,)“~ 

k,O 
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Upon integrating Eq. (32) the dose dependence of the 
swelling can be presented as 

4 NRT - -GNRT(f-f") 

= 
(1 - E,)( E$ + EJXg/( XI”)) 

cyx’/i px*/3 -I 

X 1 + ax’/’ - 1 + pxw 1 (33) 

Calculating the integral on the right-hand side of Eq. (34) 
we get 

%dt) 

zz 

(I - &,)( &$ + E;XJ( x:)) 

x(~s"I-j~+l)s-~s"'ii 

-3 ‘+2+: 
i cy A A? ) 

! 

S’/3 s’/’ 

x 2+h+ 

ln( 1 - hS’/“) 

11 A2 ) (34) 

where 

(35) 

As can be seen from Eq. (34) the dose dependence of 
void swelling under cascade damage conditions is a com- 
plicated function of a number of parameters. On the one 
hand, this set includes the parameters which characterize 
the cascade damage conditions (.+ z{, &$, x,) and which 
makes it possible to calculate the dose dependence of void 
swelling under irradiation by particles with different recoil 
energy. On the other hand, this set includes the parameters 
which characterize the microstructure of a crystal: disloca- 
tion density p, grain radius R,, distance from the grain 
boundary 1 and density of voids N,,. As has been demon- 
strated above, the calculated results are in good agreement 
with the experimental data on swelling for pure Cu at 523 
K and 623 K. It should be noted that a quantitative 
treatment of the enhanced swelling close to grain bound- 
aries requires a more sophisticated treatment [ 161. 

In the case when the dislocation density is low ( p << D), 
Eq. (34) simplifies to the following simple expression: 

I 
G NW’ = (, _ E,~( g + F~Xg,(X~)) (‘+ +ps5? 

(36) 
At low doses (up to - IO-’ dpa), the swelling will be 
directly proportional to irradiation dose S - G,,, t in 
accordance with Eq. (34). At higher doses (above - 0.1 

dpa) when the interaction of the glissile loops with voids is 
strong, the dose dependence of the swelling will depend on 
the irradiation dose as S - (GNRTtj315. As can be seen in 
Fig. 5, the swelling calculated for NV = 10’” mP3 and 
102’ rn-’ follows this dose dependence at high doses 
(they are parallel to the broken line [ 151). It is worth noting 
that although the power law variation of swelling at high 
doses (S - (Gt)“‘“) given by Eq. (36) is the same as in 
Ref. [ 151, the mechanisms of the point defect accumulation 
are quite different in the two cases. In the case when the 
cluster removal by glide is taken into account ([36]), the 
density of SIA sessile clusters achieves the steady state 
level at relatively small doses. At higher doses the increase 
in the density of SIA sessile clusters is determined by the 
increase in the sink strength of the voids since the ratio of 
the sink strengths of SIA clusters and voids for the point 
defects does not depend on dose (see Eq. (25a)). The total 
number of SIAs accumulated in the SIA clusters is much 
smaller than the total number of the vacancies accumulated 
in the voids. The main reason for the decrease in the 
swelling rate with increasing dose is the capture of glissile 
loops by the voids. 

In the second case, when the cluster removal is ne- 
glected, the situation is quite different. The density of the 
SIA clusters never reaches steady state. Accumulation of 
the SIAs takes place due to increase in the SIA clusters 
density representing the main driving force for the void 
swelling since the total number of SIAs accumulated in 
SIA clusters is equal to the total number of the vacancies 
accumulated in the voids [ 151. In this case the sink strength 
of the SIA clusters, k,:,, increases much faster than that of 
the voids, D, (k,:, - (Gt)3/5, D N (Gt)‘15). This is the 
reason why the vacancy supersaturation in this case de- 
creases very rapidly and the swelling rate remains very 
low. 

It is worth noting that there are two general features of 
the microstructure evolution in both cases. First, the 
swelling rate practically does not depend on the magnitude 
of the dislocation bias since in both cases the cascade 
production bias is a much more powerful driving force 
than the elastic bias when the dislocation density is very 
low. Second, the mean size of the sessile SIA clusters is 
very small and practically does not depend on the dose 
(this size is smaller than the mean size of the SIA clusters 
generated by the cascades). In both cases the decrease in 
the vacancy supersaturation with dose leads to an increase 
in the cluster density only. This means that in both cases 
the dislocation network is not produced if the parameters 
&r, ES are kept constant. 

Finally, it should be pointed out that because of the 
lack of appropriate experimental results, it is not possible 
at present to test the validity of the predicted relationship 
S - (GNR,t)“5 at doses higher than about I dpa. Further- 
more, it should be recognized that this simple power law 
relationship does not include the complicated effects of 
increasing concentrations of transmutational impurities 
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(e.g., Ni, Mn, He, etc.) with increasing dose during neu- 
tron irradiation of copper particularly at irradiation temper- 
atures significantly above the peak swelling temperature. 
At irradiation temperatures above OX,,, for example, both 
void nucleation and growth become strongly sensitive to 
gaseous and non-gaseous impurities produced during irra- 
diation. In addition, at these temperatures, the removal of 
SIA clusters is likely to occur not only via one-dimen- 
sional glide but also via two-dimensional conservative 
climb. Both of these processes may be strongly affected by 
impurities produced during irradiation. Possible conse- 
quences of these changes are not included in the derivation 
of the simple power law relationship between swelling and 
irradiation dose either. 

In view of these considerations, therefore, it is not very 
helpful to compare the predicted power law relationship 
with the experimental results of Gamer et al. [49] reported 
for copper irradiated at 703 K (- 0.53T,) to doses be- 
tween - 16 and - 100 dpa showing a linear dependence 
of void swelling on the irradiation dose. As indicated 
above, there could be a number of reasons that may be 
responsible for the difference between the dose depen- 
dence (S - (G NRTt)3/5) predicted in the present work and 
the experimentally observed apparently linear dependence 
of void swelling on irradiation dose at 703 K [49]. 

5. Summary and conclusions 

In recent years, significant advances have been made in 
determining the details of the damage production charac- 
teristics in multidisplacement cascades. It is well estab- 
lished by now, for example, that the damage production 
does not occur in the form of isolated Frenkel pairs with a 
homogeneous spatial distribution. Instead, intracascade re- 
combination and clustering during the cooling-down phase 
of cascades lead to (a) a drastic decrease in the defect 
production efficiency and (b) the formation of clusters of 
SIAs and vacancies. Furthermore, a fraction of small SIA 
clusters is found to be glissile. In addition, the prevailing 
vacancy supersaturation leads to transformation of a frac- 
tion of sessile SIA clusters into glissile ones. None of the 
conventional theoretical models describing the damage 
accumulation behaviour includes treatments of these fea- 
tures of the damage production. 

The treatment of the damage accumulation behaviour in 
terms of the production bias model (PBM), on the other 
hand, includes consideration of all of the main features of 
the damage production in cascades. In addition, the pro- 
duction bias model deals with the thermal stability and 
lifetime of the clusters produced in the cascades. The 
thermally stable SIA clusters are divided into glissile and 
sessile components. The glissile SIA clusters are consid- 
ered to interact with other sinks in the system such as 
dislocations, grain boundaries, voids and sessile SIA clus- 
ters. The use of the size distribution function makes it 

possible to treat the problem of the continuous transforma- 
tion of sessile clusters into glissile ones due to the pres- 
ence of the vacancy supersaturation. It has been shown that 
under a relatively simple situation where grain boundaries 
may be the only sinks for the gliding SIA clusters, the 
damage accumulation in the steady-state can be calculated 
analytically. 

Using the present methodology, the evolution of the 
size distribution of SIA clusters, sink strengths of SIA and 
vacancy clusters and voids, vacancy supersaturation and 
the resulting void swelling have been calculated as a 
function of irradiation dose for neutron irradiated copper at 
523 K. In addition, the dose dependence of the void 
swelling has been calculated for copper with different 
grain sizes irradiated at 623 K. In both cases, the calcu- 
lated swelling values are found to be in good agreement 
with low-dose (5 1 dpa) experimental results. It is reason- 
able to conclude, therefore, that the damage accumulation 
behaviour during neutron irradiation of simple metals can 
be fully accounted for in terms of the production bias 
model and one-dimensional glide of small SIA clusters. It 
should be noted that these experimental results cannot be 
understood in terms of the conventional rate theory models 
using the dislocation bias as the only driving force for 
vacancy supersaturation. 
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